Communications Biology (Aug 2022)

Non-linear machine learning models incorporating SNPs and PRS improve polygenic prediction in diverse human populations

  • Michael Elgart,
  • Genevieve Lyons,
  • Santiago Romero-Brufau,
  • Nuzulul Kurniansyah,
  • Jennifer A. Brody,
  • Xiuqing Guo,
  • Henry J. Lin,
  • Laura Raffield,
  • Yan Gao,
  • Han Chen,
  • Paul de Vries,
  • Donald M. Lloyd-Jones,
  • Leslie A. Lange,
  • Gina M. Peloso,
  • Myriam Fornage,
  • Jerome I. Rotter,
  • Stephen S. Rich,
  • Alanna C. Morrison,
  • Bruce M. Psaty,
  • Daniel Levy,
  • Susan Redline,
  • the NHLBI’s Trans-Omics in Precision Medicine (TOPMed) Consortium,
  • Tamar Sofer

DOI
https://doi.org/10.1038/s42003-022-03812-z
Journal volume & issue
Vol. 5, no. 1
pp. 1 – 12

Abstract

Read online

Combining a standard polygenic risk score (PRS) as a feature in a machine learning model increases the percentage variance explained for those traits, helping to account for non-linearities or interaction effects in genetics-based prediction models.