Biology (May 2024)
Whole Genome Analysis and Assessment of the Metabolic Potential of <i>Streptomyces carpaticus</i> SCPM-O-B-9993, a Promising Phytostimulant and Antiviral Agent
Abstract
This work aimed to study the genome organization and the metabolic potential of Streptomyces carpaticus strain SCPM-O-B-9993, a promising plant-protecting and plant-stimulating strain isolated from brown semi-desert soils with very high salinity. The strain genome contains a linear chromosome 5,968,715 bp long and has no plasmids. The genome contains 5331 coding sequences among which 2139 (40.1%) are functionally annotated. Biosynthetic gene clusters (BGCs) of secondary metabolites exhibiting antimicrobial properties (ohmyungsamycin, pellasoren, naringenin, and ansamycin) were identified in the genome. The most efficient period of SCPM-O-B-9993 strain cultivation was 72 h: during this period, the culture went from the exponential to the stationary growth phase as well as exhibited excellent phytostimulatory properties and antiviral activity against the cucumber mosaic virus in tomatoes under laboratory conditions. The Streptomyces carpaticus SCPM-OB-9993 strain is a biotechnologically promising producer of secondary metabolites exhibiting antiviral and phytostimulatory properties.
Keywords