Developing a MEMS Device with Built-in Microfluidics for Biophysical Single Cell Characterization
Yuki Takayama,
Grégoire Perret,
Momoko Kumemura,
Manabu Ataka,
Samuel Meignan,
Stanislav L. Karsten,
Hiroyuki Fujita,
Dominique Collard,
Chann Lagadec,
Mehmet Cagatay Tarhan
Affiliations
Yuki Takayama
Laboratory for Integrated Micro Mechatronic Systems (LIMMS/CNRS-IIS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Grégoire Perret
Laboratory for Integrated Micro Mechatronic Systems (LIMMS/CNRS-IIS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Momoko Kumemura
Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka 808-0196, Japan
Manabu Ataka
CNRS/IIS/COL/Lille University SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, Lille, Cedex 59046, France
Samuel Meignan
Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, Université de Lille, 3 rue Frédéric Combemale, 59000 Lille, France
Stanislav L. Karsten
NeuroInDx, Inc., 20725 S Western Ave #100, Torrance, CA 90501, USA
Hiroyuki Fujita
CNRS/IIS/COL/Lille University SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, Lille, Cedex 59046, France
Dominique Collard
Laboratory for Integrated Micro Mechatronic Systems (LIMMS/CNRS-IIS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Chann Lagadec
CNRS/IIS/COL/Lille University SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, Lille, Cedex 59046, France
Mehmet Cagatay Tarhan
Laboratory for Integrated Micro Mechatronic Systems (LIMMS/CNRS-IIS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
This study combines the high-throughput capabilities of microfluidics with the sensitive measurements of microelectromechanical systems (MEMS) technology to perform biophysical characterization of circulating cells for diagnostic purposes. The proposed device includes a built-in microchannel that is probed by two opposing tips performing compression and sensing separately. Mechanical displacement of the compressing tip (up to a maximum of 14 µm) and the sensing tip (with a quality factor of 8.9) are provided by two separate comb-drive actuators, and sensing is performed with a capacitive displacement sensor. The device is designed and developed for simultaneous electrical and mechanical measurements. As the device is capable of exchanging the liquid inside the channel, different solutions were tested consecutively. The performance of the device was evaluated by introducing varying concentrations of glucose (from 0.55 mM (0.1%) to 55.5 mM (10%)) and NaCl (from 0.1 mM to 10 mM) solutions in the microchannel and by monitoring changes in the mechanical and electrical properties. Moreover, we demonstrated biological sample handling by capturing single cancer cells. These results show three important capabilities of the proposed device: mechanical measurements, electrical measurements, and biological sample handling. Combined in one device, these features allow for high-throughput multi-parameter characterization of single cells.