AIMS Mathematics (Jan 2021)
Daily nonparametric ARCH(1) model estimation using intraday high frequency data
Abstract
In this paper, the intraday high-frequency data are used to estimate the volatility function of daily nonparametric ARCH(1) model. A nonparametric volatility proxy model is proposed to achieve this objective. Under regular assumptions, the asymptotic distribution of the proposed estimator is established. The impact of different proxies on the estimation precision is also discussed. Simulation and empirical studies show that using the intraday high frequency data can significantly improve the estimation accuracy of the considered model. The idea of this article can be easily extended to other nonparametric or semiparametric ARCH/GARCH models.
Keywords