Journal of Integrative Agriculture (Jun 2018)
Transcriptomes of early developing tassels under drought stress reveal differential expression of genes related to drought tolerance in maize
Abstract
Tassel, the male reproductive organs in maize, its development is adversely affected by drought during tasseling. To determine drought tolerance mechanisms of tassel differentiation at transcriptome level, RNA-Seq was performed using RNA of early developing tassel from 10 maize inbred lines under well-watered (control) and drought-stressed conditions, respectively. Results showed that the most active pathway for drought stress in maize were related to metabolic regulation at RNA level. And some genes, encoding enzymes involved in carbohydrate and lipid metabolism, were significantly down-regulated in drought-stressed plants. While, the transcription factors and genes, encoding catabolic or degradative enzymes, were over-expressed in maize early developing tassels under drought-stressed conditions, and among them, the transcripts of genes encoding exon-junction complexes involved in ‘RNA transcript’ and ‘mRNA surveillance’ pathways were significantly affected by drought stress. In addition, many other genes related to drought stress showed transcriptional changes at the later period of stress.