Forces in Mechanics (Feb 2024)
Probabilistic fracture analysis of double edge cracked orthotropic laminated plates using the stochastic extended finite element method
Abstract
The current computational investigation employs the stochastic extended finite element approach, which the authors have previously developed, to investigate the probabilistic fracture response of double edge cracked orthotropic laminated composite plates under varying stress conditions. The well-known extended finite element method is used to determine the mean and coefficient of variation of stress intensity factors KI and or KII by treating the input parameters as random variables. This is done under the assumption that all of the laminated plate's layers are perfectly bonded to one another and that there is no delamination effect between the layers, the matrix, or the fibres. And it's believed that the plate has through thickness crack. A combination of input random Gaussian variables is used to model the various input factors, such as the lamination angle, the applied loads, and the crack parameters (such the crack length and location). Typical numerical results are shown to investigate the effects of varying degrees of uncertainty in the lamination angle, crack length, crack length to plate width ratio, crack positions, and applied tensile, shear, and combined (tensile and shear) stresses. An excellent agreement arises when the findings generated with the stochastic extended finite element method methodology are assessed against the results found in the published literature through Monte Carlo simulations.