Nature Communications (Feb 2024)

Dual-site segmentally synergistic catalysis mechanism: boosting CoFeS x nanocluster for sustainable water oxidation

  • Siran Xu,
  • Sihua Feng,
  • Yue Yu,
  • Dongping Xue,
  • Mengli Liu,
  • Chao Wang,
  • Kaiyue Zhao,
  • Bingjun Xu,
  • Jia-Nan Zhang

DOI
https://doi.org/10.1038/s41467-024-45700-6
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Efficient oxygen evolution reaction electrocatalysts are essential for sustainable clean energy conversion. However, catalytic materials followed the conventional adsorbate evolution mechanism (AEM) with the inherent scaling relationship between key oxygen intermediates *OOH and *OH, or the lattice-oxygen-mediated mechanism (LOM) with the possible lattice oxygen migration and structural reconstruction, which are not favorable to the balance between high activity and stability. Herein, we propose an unconventional Co-Fe dual-site segmentally synergistic mechanism (DSSM) for single-domain ferromagnetic catalyst CoFeS x nanoclusters on carbon nanotubes (CNT) (CFS-ACs/CNT), which can effectively break the scaling relationship without sacrificing stability. Co3+ (L.S, t 2g 6 e g 0) supplies the strongest OH* adsorption energy, while Fe3+ (M.S, t 2g 4 e g 1) exposes strong O* adsorption. These dual-sites synergistically produce of Co-O-O-Fe intermediates, thereby accelerating the release of triplet-state oxygen ( ↑ O = O ↑ ). As predicted, the prepared CFS-ACs/CNT catalyst exhibits less overpotential than that of commercial IrO2, as well as approximately 633 h of stability without significant potential loss.