Journal of Integrative Agriculture (Jun 2025)
Identification of genomic regions and candidate genes underlying carotenoid accumulation in soybean using next-generation sequen-cing based bulk segregant analysis
Abstract
The improvement of soybean seed carotenoid contents is very important due to the beneficial role of carotenoids in human health and nutrition. However, the genetic architecture underlying soybean carotenoid biosynthesis remains largely unknown. In the present study, we employed next generation sequencing-based bulked-segregant analysis to identify new genomic regions governing seed carotenoids in 1,551 natural soybean accessions. The genomic DNA samples of individual plants with extreme phenotypes were pooled to form two bulks with high (50 accessions) and low (50 accessions) carotenoid contents for Illumina sequencing. A total of 125.09 Gb of clean bases and 89.82% of Q30 were obtained, and the average alignment efficiency was 99.45% with an average coverage depth of 62.20× and 99.75% genome coverage. Based on the G prime statistic algorithm (G´) method analysis, 16 candidate genomic loci with a total length 20.41 Mb were found to be related to the trait. Of these loci, the most significant regions displaying the highest elevated G´ values were found in chromosome 06 at a position of 18.53–22.67 Mb, and chromosome 19 at genomic region intervals of 8.36–10.94, 12.06–13.79 and 18.45–20.26 Mb. These regions were then used to identify the key candidate genes. In these regions, 250 predicted genes were found and analyzed to obtain 90 significantly enriched (P<0.05) Gene Ontology (GO) terms. Based on ANNOVAR analysis, 50 genes with non-synonymous and stopgained mutations were preferentially selected as potential candidate genes. Of those 50 genes, following their gene annotation functions and high significant haplotype variations in various environments, five genes were identified as the most promising candidate genes regulating soybean seed carotenoid accumulation, and they should be investigated in further functional validation studies. Collectively, understanding the genetic basis of carotenoid pigments and identifying genes underpinning carotenoid accumulation via a bulked-segregant analysis-based sequencing (BSA-seq) approach provide new insights for exploring future molecular breeding efforts to produce soybean cultivars with high carotenoid content.