AIMS Mathematics (Sep 2021)
>Let $ R $ be a ring with identity. The commuting graph of $ R $ is the graph associated to $ R $ whose vertices are non-central elements in $ R $, and distinct vertices $ A $ and $ B $ are adjacent if and only if $ AB = BA $. In this paper, we completely determine the automorphism group of the commuting graph of $ 2\times 2 $ matrix ring over $ \mathbb{Z}_{p^{s}} $, where $ \mathbb{Z}_{p^{s}} $ is the ring of integers modulo $ p^{s} $, $ p $ is a prime and $ s $ is a positive integer.
Abstract
Let $ R $ be a ring with identity. The commuting graph of $ R $ is the graph associated to $ R $ whose vertices are non-central elements in $ R $, and distinct vertices $ A $ and $ B $ are adjacent if and only if $ AB = BA $. In this paper, we completely determine the automorphism group of the commuting graph of $ 2\times 2 $ matrix ring over $ \mathbb{Z}_{p^{s}} $, where $ \mathbb{Z}_{p^{s}} $ is the ring of integers modulo $ p^{s} $, $ p $ is a prime and $ s $ is a positive integer.
Keywords