Ecotoxicology and Environmental Safety (Jan 2022)

Effects of diluted bitumen exposure on the survival, physiology, and behaviour of zebra finches (Taeniopygia guttata)

  • Elizabeth J. Ruberg,
  • Mason D. King,
  • John E. Elliott,
  • Gregg T. Tomy,
  • Ifeoluwa Idowu,
  • Melissa L. Vermette,
  • Tony D. Williams

Journal volume & issue
Vol. 229
p. 113071

Abstract

Read online

Diluted bitumen (dilbit) is an unconventional crude petroleum increasingly being extracted and transported to market by pipeline and tanker. Despite the transport of dilbit through terrestrial, aquatic, and coastal habitat important to diverse bird fauna, toxicity data are currently only available for fish and invertebrates. We used the zebra finch (Taeniopygia guttata) as a tractable, avian model system to investigate exposure effects of lightly weathered Cold Lake blend dilbit on survival, tissue residue, and a range of physiological and behavioural endpoints. Birds were exposed via oral gavage over 14-days with dosages of 0, 2, 4, 6, 8, 10, or 12 mL dilbit/kg bw/day. We identified an LD50 of 9.4 mL/kg/d dilbit, with complete mortality at 12 mL/kg/d. Mortality was associated with mass loss, external oiling, decreased pectoral and heart mass, and increased liver mass. Hepatic ethoxyresorufin-O-deethylase activity (EROD) was elevated in all dilbit-dosed birds compared with controls but there was limited evidence of sublethal effects of dilbit on physiological endpoints at doses < 10 mL/kg/d (hematocrit, hemoglobin, total antioxidants, and reactive oxygen metabolites). Dilbit exposure affected behavior, with more dilbit-treated birds foraging away from the feeder, more birds sleeping or idle at low dilbit doses, and fewer birds huddling together at high dilbit doses. Naphthalene, dibenzothiophene, and their alkylated congeners in particular (e.g. C2-napthalene and C2-dibenzothiophene) accumulated in the liver at greater concentrations in dilbit-treated birds compared to controls. Although directly comparable studies in the zebra finch are limited, our mortality data suggest that dilbit is more toxic than the well-studied MC252 conventional light crude oil with this exposure regime. A lack of overt sublethal effects at lower doses, but effects on body mass and composition, behaviour, high mortality, and elevated PAC residue at doses ≥ 10 mL/kg/d suggest a threshold effect.

Keywords