Nutrients (Dec 2018)

Low Sucrose, Omega-3 Enriched Diet Has Region-Specific Effects on Neuroinflammation and Synaptic Function Markers in a Mouse Model of Doxorubicin-Based Chemotherapy

  • Tonya S. Orchard,
  • Monica M. Gaudier-Diaz,
  • Panchita Phuwamongkolwiwat-Chu,
  • Rebecca Andridge,
  • Maryam B. Lustberg,
  • Joshua Bomser,
  • Rachel M. Cole,
  • Martha A. Belury,
  • A. Courtney DeVries

DOI
https://doi.org/10.3390/nu10122004
Journal volume & issue
Vol. 10, no. 12
p. 2004

Abstract

Read online

Chemotherapeutic agents such as doxorubicin may negatively affect long-term brain functioning in cancer survivors; neuroinflammation may play a causal role. Dietary approaches that reduce inflammation, such as lowering sucrose and increasing eicosapentaenoic acid plus docosahexaenoic acid (EPA + DHA), may attenuate chemotherapy-induced neuroinflammation and synaptic damage, thereby improving quality of life. Ovariectomized, C57BL/6 mice were assigned to a chemotherapy (9 mg/kg doxorubicin + 90 mg/kg cyclophosphamide) or vehicle two-injection regimen, with injections two and four weeks after starting diets. In Study 1, mice received low sucrose diets with EPA + DHA or No EPA + DHA for four to six weeks; tissues were collected four, seven, or 14 days after the second injection. Compared to vehicle, chemotherapy increased pro-inflammatory cytokine IL-1β at day seven in the cortex and hippocampus, and reduced gene expression of synaptic marker Shank 3 at all timepoints in cortex, while EPA + DHA increased expression of Shank 3. In Study 2, high or low sucrose/EPA + DHA or No EPA + DHA diets were fed for five weeks; tissues were collected ten days after the second injection. Among chemotherapy-treated mice, brain DHA was higher with low sucrose feeding. Furthermore, low sucrose increased gene expression of Shank 1, while EPA + DHA increased expression of Shank 3 and reduced protein concentrations of pro-inflammatory markers IL-5, IL-6 and KC/GRO in the cortex, but not the hippocampus. Low sucrose, EPA + DHA diets may attenuate neuroinflammation and synaptic damage induced by doxorubicin-based chemotherapy in specific brain regions.

Keywords