BMC Public Health (Feb 2023)

Visceral adiposity index is positively associated with fasting plasma glucose: a cross-sectional study from National Health and Nutrition Examination Survey 2017–2020

  • Yuhan Qin,
  • Yong Qiao,
  • Dong Wang,
  • Mingkang Li,
  • Zhanneng Yang,
  • Linqing Li,
  • Gaoliang Yan,
  • Chengchun Tang

DOI
https://doi.org/10.1186/s12889-023-15231-8
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Visceral adiposity index (VAI) has been recognized as a reliable indicator for visceral adiposity. However, it remains largely unexplored on its association with fasting plasma glucose (FPG). The current study aims to explore the association between VAI and FPG using a representative dataset. Methods A cross-sectional study was carried out based on the dataset from National Health and Nutrition Examination Survey (NHANES) 2017–2020. Univariate and Multiple linear regression analysis were performed to explore the relationship between VAI and FPG. Generalized additive model (GAM) and smooth curve fitting analysis were performed to explore the nonlinear relationship between VAI and FPG. Receiver operating characteristic (ROC) analysis was used to evaluate the predictive value of VAI for FPG elevation. Results A total of 4437 participants with complete data were finally included in the research. Individuals were divided into 4 quartiles according to the calculated VAI value: Q1 (VAI<0.69), Q2 (0.69 ≤ VAI < 1.18), Q3 (1.18 ≤ VAI < 2.02) and Q4 (VAI ≥ 2.02). FPG significantly increased with the increasing VAI quartile. Multiple linear regression analysis showed VAI was independently positively associated with FPG after adjusting confounding factors. As a continuous variable, an increase of one unit in VAI was correlated with 0.52 mmol/L (95% CI: 0.41–0.63, p < 0.0001) higher FPG level. As a categorical variable, 4th VAI quartile group was related to 0.71 mmol/L (95% CI: 0.47–0.95, p < 0.001) higher FPG level compared with 1st VAI group. GAM and smooth curve fitting analysis identified the non-linear relationship between VAI and FPG, and 4.02 was identified as the inflection point using two-piecewise linear regression. The positive association between VAI and FPG existed when VAI was lower (β = 0.73, p < 0.0001) and higher than 4.02 (β = 0.23, p = 0.0063). ROC analysis indicated VAI has a good predictive value for FPG elevation (AUC = 0.7169, 95% CI: 0.6948–0.7389), and the best threshold of VAI was 1.4315. Conclusion VAI was an independently risk indicator for FPG, and VAI was nonlinearly positively associated with FPG. VAI had a good predictive value for elevated FPG. VAI might become a useful indicator for risk assessment and treatment of hyperglycemia in clinical practice.

Keywords