Applied Sciences (Jun 2022)

Records of Organic Carbon Isotopic Composition and Its Paleoenvironmental Implications in Shengshan Island Loess Deposition in the East China Sea during the Last Glacial Period

  • Shaofang Ren,
  • Yiqing Song,
  • Hao Long,
  • Chao Wu,
  • Zhigang Wang,
  • Chengxin Yi,
  • Hui Wang,
  • Limin Zhou,
  • Xiangmin Zheng

DOI
https://doi.org/10.3390/app12115724
Journal volume & issue
Vol. 12, no. 11
p. 5724

Abstract

Read online

Organic carbon isotopic composition (δ13Corg) in loess deposits is an important indicator of terrestrial paleovegetation, and it has been widely used for paleoenvironmental reconstruction in aeolian sediments around the world. However, little research has been done on the variation and paleoenvironmental implication of δ13Corg from loess deposits on Shengshan Island, East China Sea, during the last glacial period (LG). In this research, we present optically stimulated luminescence (OSL) ages, total organic carbon (TOC) data and δ13Corg records of the loess section at Chenqianshan (CQS) on Shengshan Island. Additionally, to study the effectiveness of δ13Corg in documenting paleoenvironmental changes, magnetic susceptibilities and diffuse reflectance spectra were surveyed. TOC concentration for the CQS loess section ranged from 0.11% to 0.47%, and the δ13Corg composition of the CQS loess section varied between −20.80‰ and −24.56‰ during the LG. The average value of C4 abundance was 21.31%. TOC, δ13Corg, χfd, and Hm/(Hm + Gt) curves for the CQS loess section showed similar patterns. The results of our study indicated that the vegetation of the CQS loess deposit was mainly C3/C4 mixed vegetation, and C3 vegetation was the most important vegetation. The comparison between the δ13Corg curve for the CQS section and other existing δ13Corg records of the loess sections from central and northern China showed similar trends and their vegetation succession exhibited synchronous change during the LG. Based on a comparison of the δ13Corg record, C4 abundance and χfd of the CQS section and other global geological records, it was concluded that the mutual effects of precipitation and temperature caused the change of paleovegetation in loess deposits on islands in the East China Sea during the LG.

Keywords