Nuclear Engineering and Technology (Feb 2020)
Thermal-hydraulic simulation and evaluation of a natural circulation thermosyphon loop for a reactor cavity cooling system of a high-temperature reactor
Abstract
The investigation into a full-scale 27 m high, by 6 m wide, thermosyphon loop. The simulation model is based on a one-dimensional axially-symmetrical control volume approach, where the loop is divided into a series of discreet control volumes. The three conservation equations, namely, mass, momentum and energy, were applied to these control volumes and solved with an explicit numerical method. The flow is assumed to be quasi-static, implying that the mass-flow rate changes over time. However, at any instant in time the mass-flow rate is constant around the loop. The boussinesq approximation was invoked, and a reasonable correlation between the experimental and theoretical results was obtained. Experimental results are presented and the flow regimes of the working fluid inside the loop identified. The results indicate that a series of such thermosyphon loops can be used as a cavity cooling system and that the one-dimensional theoretical model can predict the internal temperature and mass-flow rate of the thermosyphon loop. Keywords: Thermosyphon, Natural circulation, High-temperature reactor cooling, Thermal-hydraulic simulation