Micromachines (Mar 2025)

The Influence of Microsecond Pulsed Electric Field and Direct Current Electric Field on the Orientation Angle of Boron Nitride Nanosheets and the Thermal Conductivity of Epoxy Resin Composites

  • Yan Mi,
  • Yiqin Peng,
  • Wentao Liu,
  • Lei Deng,
  • Benxiang Shu

DOI
https://doi.org/10.3390/mi16040413
Journal volume & issue
Vol. 16, no. 4
p. 413

Abstract

Read online

The electric field orientation method effectively promotes the orientation and arrangement of BN nanosheets, forming a thermal conduction network and enhancing the thermal conductivity of the composite material. In this study, microsecond pulsed electric field and direct current electric field were applied to induce the orientation and arrangement of BN nanosheets and improve the thermal conductivity of epoxy resin composites. Under a microsecond pulsed electric field of 50 Hz, 1.5 μs, and 8 kV/mm, the average orientation angle of BN nanosheets increased by 147.7%, and the thermal conductivity of the composite reached 0.352 W/(m·K), which is 1.84 times that of pure epoxy resin. In contrast, under a DC electric field of 70 V/mm, the average orientation angle of BN nanosheets increased by only 57.9%, while the thermal conductivity of the composite reached 0.364 W/(m·K), 1.91 times that of pure epoxy resin. The results indicate that the microsecond pulsed electric field primarily enhances the local orientation of the fillers to improve thermal conductivity, whereas the DC electric field mainly enhances the global arrangement of the fillers to achieve a similar effect. Additionally, thermogravimetric analysis and differential scanning calorimetry were conducted to evaluate the thermal properties of the composites. The results demonstrate that after BN nanosheets orientation and arrangement within the epoxy resin induced by both microsecond pulsed and DC electric fields, the composites exhibited a higher glass transition temperature and improved thermal stability. This study systematically explores the effects of microsecond pulsed and DC electric fields on filler orientation and arrangement, providing valuable insights for the fabrication of electric field-oriented composites.

Keywords