Food Chemistry: X (Dec 2024)

Evaluation of astaxanthin stability under varying temperatures and ultraviolet irradiation durations based on Raman spectroscopy

  • Xiaodan Liu,
  • Wenjing Li,
  • Zhiheng Yue,
  • Jiangjin Qian,
  • Wenjing Zhu,
  • Huang Dai,
  • Jiahua Wang,
  • Fuwei Pi

Journal volume & issue
Vol. 24
p. 101947

Abstract

Read online

As a potent naturally carotenoid, Astaxanthin (AST) is commonly used as a natural coloring agent and antioxidant in food products, and it's stability is of great interest. The stability of AST solution stored in glass bottle under different temperatures and ultraviolet (UV) irradiation durations was analyzed in situ using confocal Raman spectroscopy, and the acceptable depth of focus was optimized. Raman spectra of AST geometrical isomers were determined by density functional theory (DFT) simulation, and characteristic peaks were selected for studying AST degradation and isomerization. Raman spectra and peak-fitting spectra based on gaussian multi-peak fitting analysis combined with Pearson's correlation analysis were conducted to study the effect of temperatures and UV irradiation on AST degradation and isomerization. The peak intensity ratio of I1518/I880 had been selected as the optimal Raman spectral variable for AST degradation based on Pearson's correlation analysis. Finally, degradation kinetic curves and degradation rate prediction equation were established. The results indicated that the isomerization of 9,13-di-cis isomer occurred at a UV irradiation of 288 h. Moreover, high temperatures above 60 °C and prolonged UV exposure exceeds 48 h can cause significant degradation of AST, with a degradation rate above 20 %. This study provided an in-situ, nondestructive potential method for the calculation of AST degradation under different temperatures and UV irradiation durations, which contribute guiding insights into the development and utilization of AST in food industry.

Keywords