Physical Review Research (Dec 2020)

Thermodynamic evolution theorem for chemical reactions

  • David Hochberg,
  • Josep M. Ribó

DOI
https://doi.org/10.1103/PhysRevResearch.2.043367
Journal volume & issue
Vol. 2, no. 4
p. 043367

Abstract

Read online Read online

The production, exchange, and balance of entropy characterize the thermodynamics of open nonequilibrium systems, ranging from chemical reactions, cells, ecological systems, and Earth-like planets to stars. We generalize the Glansdorff-Prigogine general evolution criterion to constrain the entropy balance in volumetric open-flow chemical reaction systems. We derive a thermodynamic inequality governing the joint evolution of both the internal microreversible reactions and the matter fluxes that the system exchanges with its environment, as exemplified by the distribution of the entropy productions and exchanges over the chemical reaction pathways. We validate this evolution theorem and discuss the physical significance of this pathwise partitioning of the dissipation, for an autocatalytic model capable of spontaneous mirror symmetry breaking.