Plants (Jun 2023)

MTDL-EPDCLD: A Multi-Task Deep-Learning-Based System for Enhanced Precision Detection and Diagnosis of Corn Leaf Diseases

  • Dikang Dai,
  • Peiwen Xia,
  • Zeyang Zhu,
  • Huilian Che

DOI
https://doi.org/10.3390/plants12132433
Journal volume & issue
Vol. 12, no. 13
p. 2433

Abstract

Read online

Corn leaf diseases lead to significant losses in agricultural production, posing challenges to global food security. Accurate and timely detection and diagnosis are crucial for implementing effective control measures. In this research, a multi-task deep learning-based system for enhanced precision detection and diagnosis of corn leaf diseases (MTDL-EPDCLD) is proposed to enhance the detection and diagnosis of corn leaf diseases, along with the development of a mobile application utilizing the Qt framework, which is a cross-platform software development framework. The system comprises Task 1 for rapid and accurate health status identification (RAHSI) and Task 2 for fine-grained disease classification with attention (FDCA). A shallow CNN-4 model with a spatial attention mechanism is developed for Task 1, achieving 98.73% accuracy in identifying healthy and diseased corn leaves. For Task 2, a customized MobileNetV3Large-Attention model is designed. It achieves a val_accuracy of 94.44%, and improvements of 4–8% in precision, recall, and F1 score from other mainstream deep learning models. Moreover, the model attains an area under the curve (AUC) of 0.9993, exhibiting an enhancement of 0.002–0.007 compared to other mainstream models. The MTDL-EPDCLD system provides an accurate and efficient tool for corn leaf disease detection and diagnosis, supporting informed decisions on disease management, increased crop yields, and improved food security. This research offers a promising solution for detecting and diagnosing corn leaf diseases, and its continued development and implementation may substantially impact agricultural practices and outcomes.

Keywords