Sensors (Mar 2025)
Intelligent Energy Efficiency Maximization for Wirelessly-Powered UAV-Assisted Secure Sensor Network
Abstract
The rapid proliferation of Internet of Things (IoT) devices and applications has led to an increasing demand for energy-efficient and secure communication in wireless sensor networks. In this article, we firstly propose an intelligent approach to maximize the energy efficiency of the UAV in a secure sensor network with wireless power transfer (WPT). All sensors harvest energy via downlink signal and use it to transmit uplink information to the UAV. To ensure secure data transmission, the UAV needs to optimize the transmission parameters to decode received information under malicious interference from an attacker. Code Division Multiple Access (CDMA) is adopted to improve uplink communication robustness. To maximize the UAV’s energy efficiency in data collection tasks, we formulate a constrained optimization problem that jointly optimizes charging power, charging duration, and data transmission duration. Applying Deep Deterministic Policy Gradient (DDPG) algorithm, we train an action policy to dynamically determine near-optimal transmission parameters in real time. Numerical results validate the superiority of proposed intelligent approach over exhaustive search and gradient ascent techniques. This work provides some important guidelines for the design of green secure wireless-powered sensor networks.
Keywords