Remote Sensing (Sep 2020)
Joint Use of Spaceborne Microwave Sensor Data and CYGNSS Data to Observe Tropical Cyclones
Abstract
The joint use of spaceborne microwave sensor data and Cyclone Global Navigation Satellite System (CYGNSS) data to observe tropical cyclones (TCs) is presented in this paper. The Soil Moisture Active and Passive (SMAP) radiometer was taken as an example of a spaceborne microwave sensor, and its data and the CYGNSS data were fused to fix the center of a TC and to measure the maximum wind speed around the TC inner core. This process included data preprocessing, image fusion, determination of the TC center position, and the estimation of the TC’s intensity. For all of the observed hurricanes, the experimental results demonstrated that the proposed method obtains a more complete structure of the TC and can measure the surface wind speed around the TC inner core at more frequent intervals compared to the case where the SMAP radiometer data or the CYGNSS data are employed alone. Furthermore, when comparing the TC tracks obtained by the proposed method with the best tracks provided by the National Hurricane Center (NHC), we found that the mean absolute error values ranged between 18.4 and 46 km, the standard deviation varied between 15.1 and 28.2 km, and both of these were smaller than the values obtained by only using the CYGNSS data. In addition, when comparing the maximum wind speed around the TC inner core obtained by the proposed method with the best track peak winds estimated by the NHC, we found that the mean absolute error values ranged between 7.7 and 15.7 m/s, the root-mean-square difference values varied between 8.6 and 18 m/s, the correlation coefficients varied between 0.1782 and 0.9877, the bias values varied between −8.5 and 4.5 m/s, and all of these values were smaller in most cases, than those obtained by only using the CYGNSS data.
Keywords