Biology (Oct 2021)

Demonstrative Experiment on the Favorable Effects of Static Electric Field Treatment on Vitamin D<sub>3</sub>-Induced Hypercalcemia

  • Tohru Kimura,
  • Kengo Inaka,
  • Noboru Ogiso

DOI
https://doi.org/10.3390/biology10111116
Journal volume & issue
Vol. 10, no. 11
p. 1116

Abstract

Read online

The purpose of this study was to elucidate the effects of static electric field (SEF) treatment on vitamin D3 (Vit D3)-induced hypercalcemia and renal calcification in mice. The mice were assigned to three groups: Vit D3-treated mice, mice treated with Vit D3 and SEF (Vit D3 + SEF), and untreated mice. After the administration of Vit D3, the Vit D3 + SEF-treated mice were exposed to SEF treatment by a high-voltage alternating current over five days. Serum biochemical examinations revealed that both the creatinine and blood urea nitrogen concentrations were significantly higher in the Vit D3-treated group. Significantly, decreased Cl concentrations, and increased Ca and inorganic phosphorus concentrations, were found in the Vit D3-treated group. In the Vit D3 + SEF-treated group, these parameters returned to the levels of the untreated group. In the Vit D3-treated group, histopathological examinations showed marked multifocal calcification in the lumens of the renal tubules and the renal parenchyma. The myocardium was replaced by abundant granular mineralization (calcification), with degeneration and necrosis of the calcified fibers. The stomach showed calcification of the cardiac mucosa. SEF treatment remarkably attenuated the Vit D3-induced hypervitaminotic injuries. In conclusion, this study provides important evidence that SEF treatment can reduce hypercalcemia and remove calcium deposits from the renal, cardiac, and gastric tissues. SEF treatment is useful in the regulation of disorders caused by an imbalance of serum electrolytes.

Keywords