East European Journal of Physics (Mar 2024)

Thermally Activated Delayed Fluorescence in Organic Semiconductors and Its Application in Light-Emitting Diodes

  • Serhii Melnykov,
  • Igor Helzhynskyy,
  • Tetiana Bulavinets,
  • Pavlo Stakhira

DOI
https://doi.org/10.26565/2312-4334-2024-1-02
Journal volume & issue
no. 1
pp. 31 – 42

Abstract

Read online

The presence of the effect of thermally activated delayed fluorescence (TADF) in organic light-emitting materials (emitters), manifested in the "collecting" of triplet excitons in organic semiconductor complexes that do not contain noble metals, creates excellent prerequisites for the application of TADF materials in the technology of manufacturing organic light-emitting diodes (OLED). The significant progress in solving theoretical and technical problems, achieved in the process of development of highly efficient TADF materials, paves the way for the formation of the future of organic electronics. This review presents the analyses of the nature of the long-term fluorescence generation mechanism at the molecular level and the up-to-date strategies for designing TADF donor-acceptor materials, as well as exciplex intermolecular complexes. Special attention is focused on the analysis of TADF emitter ambipolar materials with a highly twisted, rigid molecular structure, which reveal a tendency towards the multi-channel emission mechanisms and their implementation in a variety of OLED structure architectures.

Keywords