Photonics (Oct 2021)
An Ultra-Compact Design of Plasmonic Memristor with Low Loss and High Extinction Efficiency Based on Enhanced Interaction between Filament and Concentrated Plasmon
Abstract
We present a numerical design of the plasmonic memristive switching device operated at the telecommunication wavelength of 1.55 μm, which consists of a triangle-shaped metal taper mounted on top of a Si waveguide, with rational doping in the area below the apex of the taper. This device can achieve optimal vertical coupling of light energy from the Si waveguide to the plasmonic region and, at the same time, focus the plasmon into the apex of the metal taper. Moreover, the area with concentrated plasmon is overlapped with that where the memristive switching occurs, due to the formation/removal of the metallic nano-filament. As a result, the highly distinct transmission induced by the switching of the plasmonic memristor can be produced because of the maximized interactions between the filament and the plasmon. Our numerical simulation shows that the device hasa compact size (610 nm), low insertion loss (~1 dB), and high extinction efficiency (4.6 dB/μm). Additionally, we point out that stabilizing the size of the filament is critical to improve the operation repeatability of the plasmonic memristive switching device.
Keywords