BMC Pregnancy and Childbirth (Jun 2007)

Preterm labour detection by use of a biophysical marker: the uterine electrical activity

  • Germain Guy,
  • Rihana Sandy,
  • Terrien Jérémy,
  • Marque Catherine K

DOI
https://doi.org/10.1186/1471-2393-7-S1-S5
Journal volume & issue
Vol. 7, no. Suppl 1
p. S5

Abstract

Read online

Abstract Background The electrical activity of the uterine muscle is representative of uterine contractility. Its characterization may be used to detect a potential risk of preterm delivery in women, even at an early gestational stage. Methods We have investigated the effect of the recording electrode position on the spectral content of the signal by using a mathematical model of the women's abdomen. We have then compared the simulated results to actual recordings. On signals with noise reduced with a dedicated algorithm, we have characterized the main frequency components of the signal spectrum in order to compute parameters indicative of different situations: preterm contractions resulting nonetheless in term delivery (i.e. normal contractions) and preterm contractions leading to preterm delivery (i.e. high-risk contractions). A diagnosis system permitted us to discriminate between these different categories of contractions. As the position of the placenta seems to affect the frequency content of electrical activity, we have also investigated in monkeys, with internal electrodes attached on the uterus, the effect of the placenta on the spectral content of the electrical signals. Results In women, the best electrode position was the median vertical axis of the abdomen. The discrimination between high risk and normal contractions showed that it was possible to detect a risk of preterm labour as early as at the 27th week of pregnancy (Misclassification Rate range: 11–19.5%). Placental influence on electrical signals was evidenced in animal recordings, with higher energy content in high frequency bands, for signals recorded away from the placenta when compared to signals recorded above the placental insertion. However, we noticed, from pregnancy to labour, a similar evolution of the frequency content of the signal towards high frequencies, whatever the relative position of electrodes and placenta. Conclusion On human recordings, this study has proved that it is possible to detect, by non-invasive abdominal recordings, a risk of preterm birth as early as the 27th week of pregnancy. On animal signals, we have evidenced that the placenta exerts a local influence on the characteristics of the electrical activity of the uterus. However, these differences have a small influence on premature delivery risk diagnosis when using proper diagnosis tools.