Parallelization Strategy for 3D Probabilistic Numerical Cracking Model Applied to Large Concrete Structures
Mariane Rodrigues Rita,
Pierre Rossi,
Eduardo de Moraes Rego Fairbairn,
Fernando Luiz Bastos Ribeiro,
Jean-Louis Tailhan,
Henrique Conde Carvalho de Andrade,
Magno Teixeira Mota
Affiliations
Mariane Rodrigues Rita
Civil Engineering Program, Universidade Federal do Rio de Janeiro (UFRJ), Av. Horácio Macedo, 2030, Cidade Universitária, Rio de Janeiro 21941-598, Brazil
Pierre Rossi
Civil Engineering Program, Universidade Federal do Rio de Janeiro (UFRJ), Av. Horácio Macedo, 2030, Cidade Universitária, Rio de Janeiro 21941-598, Brazil
Eduardo de Moraes Rego Fairbairn
Civil Engineering Program, Universidade Federal do Rio de Janeiro (UFRJ), Av. Horácio Macedo, 2030, Cidade Universitária, Rio de Janeiro 21941-598, Brazil
Fernando Luiz Bastos Ribeiro
Civil Engineering Program, Universidade Federal do Rio de Janeiro (UFRJ), Av. Horácio Macedo, 2030, Cidade Universitária, Rio de Janeiro 21941-598, Brazil
Jean-Louis Tailhan
Department of Materials and Structures, Gustave Eiffel University, 13015 Marseille, France
Henrique Conde Carvalho de Andrade
Civil Engineering Program, Universidade Federal do Rio de Janeiro (UFRJ), Av. Horácio Macedo, 2030, Cidade Universitária, Rio de Janeiro 21941-598, Brazil
Magno Teixeira Mota
Civil Engineering Program, Universidade Federal do Rio de Janeiro (UFRJ), Av. Horácio Macedo, 2030, Cidade Universitária, Rio de Janeiro 21941-598, Brazil
This work presents the application of a finite element model utilizing a three-dimensional (3D) probabilistic semi-explicit cracking model to analyze the rupture process of a large concrete wall beam. The numerical analysis predicts both the global behavior of the structure and its primary rupture mechanisms, utilizing three different finite element mesh refinements to ensure robustness. A Monte Carlo (MC) procedure is integrated into the modeling approach to account for probabilistic variations of the material properties. The statistical analysis derived from this probabilistic model may sometimes result in overly conservative safety coefficients, particularly when using a coarse mesh. Additionally, the detailed understanding of the structure’s cracking process, regardless of its rupture mechanism, may experience some reduction in precision. Due to the necessity of numerous simulations to achieve statistically significant results, the MC procedure can become computationally expensive. To address this, a straightforward parallelization of the Monte Carlo procedure was implemented, allowing multiple finite element analyses to be conducted concurrently. This strategy significantly reduced computational time, thereby enhancing the efficiency of the numerical model in performing numerical simulations of structural engineering.