JMIR Medical Informatics (Apr 2024)

Interpretable Deep Learning System for Identifying Critical Patients Through the Prediction of Triage Level, Hospitalization, and Length of Stay: Prospective Study

  • Yu-Ting Lin,
  • Yuan-Xiang Deng,
  • Chu-Lin Tsai,
  • Chien-Hua Huang,
  • Li-Chen Fu

DOI
https://doi.org/10.2196/48862
Journal volume & issue
Vol. 12
p. e48862

Abstract

Read online

BackgroundTriage is the process of accurately assessing patients’ symptoms and providing them with proper clinical treatment in the emergency department (ED). While many countries have developed their triage process to stratify patients’ clinical severity and thus distribute medical resources, there are still some limitations of the current triage process. Since the triage level is mainly identified by experienced nurses based on a mix of subjective and objective criteria, mis-triage often occurs in the ED. It can not only cause adverse effects on patients, but also impose an undue burden on the health care delivery system. ObjectiveOur study aimed to design a prediction system based on triage information, including demographics, vital signs, and chief complaints. The proposed system can not only handle heterogeneous data, including tabular data and free-text data, but also provide interpretability for better acceptance by the ED staff in the hospital. MethodsIn this study, we proposed a system comprising 3 subsystems, with each of them handling a single task, including triage level prediction, hospitalization prediction, and length of stay prediction. We used a large amount of retrospective data to pretrain the model, and then, we fine-tuned the model on a prospective data set with a golden label. The proposed deep learning framework was built with TabNet and MacBERT (Chinese version of bidirectional encoder representations from transformers [BERT]). ResultsThe performance of our proposed model was evaluated on data collected from the National Taiwan University Hospital (901 patients were included). The model achieved promising results on the collected data set, with accuracy values of 63%, 82%, and 71% for triage level prediction, hospitalization prediction, and length of stay prediction, respectively. ConclusionsOur system improved the prediction of 3 different medical outcomes when compared with other machine learning methods. With the pretrained vital sign encoder and repretrained mask language modeling MacBERT encoder, our multimodality model can provide a deeper insight into the characteristics of electronic health records. Additionally, by providing interpretability, we believe that the proposed system can assist nursing staff and physicians in taking appropriate medical decisions.