BMJ Open (Jun 2022)
Chronic lung lesions in COVID-19 survivors: predictive clinical model
- ,
- Paulo A Lotufo,
- Juliana C Ferreira,
- Eloisa Bonfa,
- Anna S Levin,
- Rodrigo Caruso Chate,
- Marta Imamura,
- Esper G Kallas,
- Roger Chammas,
- Thais Mauad,
- Izabel Marcilio,
- Nelson Gouveia,
- Ricardo Nitrini,
- José Eduardo Krieger,
- Marcio Valente Yamada Sawamura,
- Michelle Louvaes Garcia,
- Cristiano Gomes,
- Guilherme Fonseca,
- Jorge Hallak,
- Luis Yu,
- Marcio Mancini,
- Maria Elizabeth Rossi,
- Thiago Avelino-Silva,
- Edivaldo M Utiyama,
- Aluisio C Segurado,
- Beatriz Perondi,
- Anna Miethke-Morais,
- Amanda C Montal,
- Leila Harima,
- Marjorie F Silva,
- Marcelo C Rocha,
- Maria Amélia de Jesus,
- Carolina Carmo,
- Clarice Tanaka,
- Julio F M Marchini,
- Thaís Guimarães,
- Ester Sabino,
- Carlos Roberto Ribeiro Carvalho,
- Celina Almeida Lamas,
- Diego Armando Cardona Cardenas,
- Daniel Mario Lima,
- Paula Gobi Scudeller,
- João Marcos Salge,
- Cesar Higa Nomura,
- Marco Antonio Gutierrez,
- Adriana L Araújo,
- Bruno F Guedes,
- Carolina S Lázari,
- Cassiano C Antonio,
- Claudia C Leite,
- Emmanuel A Burdmann,
- Euripedes C Miguel,
- Fabio R Pinna,
- Fabiane Y O Kawano,
- Geraldo F Busatto,
- Giovanni G Cerri,
- Heraldo P Souza,
- Izabel C Rios,
- Larissa S Oliveira,
- Linamara R Batisttella,
- Luiz Henrique M Castro,
- Marcello M C Magri,
- Maria Cassia J M Corrêa,
- Maria Cristina P B Francisco,
- Maura S Oliveira,
- Orestes V Forlenza,
- Ricardo F Bento,
- Rodolfo F Damiano,
- Rossana P Francisco,
- Solange R G Fusco,
- Tarcisio E P Barros-Filho,
- Wilson J Filho
Affiliations
- Paulo A Lotufo
- 6 Center for Clinical and Epidemiologic Research, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
- Juliana C Ferreira
- Eloisa Bonfa
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Rheumatology Division, Sao Paulo, Brazil
- Anna S Levin
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Rodrigo Caruso Chate
- Department of Radiology, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Marta Imamura
- 5 Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
- Esper G Kallas
- Department of Infectious and Parasitic Diseases, University of Sao Paulo, São Paulo, São Paulo, Brazil
- Roger Chammas
- Thais Mauad
- Izabel Marcilio
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, University of São Paulo, São Paulo, Brazil
- Nelson Gouveia
- 1 Departamento de Medicina Preventiva, Universidade de Sao Paulo Faculdade de Medicina, Sao Paulo, Brazil
- Ricardo Nitrini
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
- José Eduardo Krieger
- Marcio Valente Yamada Sawamura
- Instituto de Radiologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
- Michelle Louvaes Garcia
- Departamento de Cardio-Pneumologia, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
- Cristiano Gomes
- Guilherme Fonseca
- Jorge Hallak
- Luis Yu
- Marcio Mancini
- Maria Elizabeth Rossi
- Thiago Avelino-Silva
- Edivaldo M Utiyama
- Aluisio C Segurado
- Beatriz Perondi
- Anna Miethke-Morais
- Amanda C Montal
- Leila Harima
- Marjorie F Silva
- Marcelo C Rocha
- Maria Amélia de Jesus
- Carolina Carmo
- Clarice Tanaka
- Julio F M Marchini
- Thaís Guimarães
- Ester Sabino
- 7Department of Infectious Diseases, School of Medicine and Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
- Carlos Roberto Ribeiro Carvalho
- Discipline of Pulmonology, Heart Institute (InCor), Hospital das Clínicas, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Celina Almeida Lamas
- Instituto do Coração—Divisão de Pneumologia, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, Brazil
- Diego Armando Cardona Cardenas
- Instituto do Coração—Divisão de Informática, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, Brazil
- Daniel Mario Lima
- Instituto do Coração—Divisão de Informática, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, Brazil
- Paula Gobi Scudeller
- Instituto do Coração—Divisão de Pneumologia, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, Brazil
- João Marcos Salge
- Instituto do Coração—Divisão de Pneumologia, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, Brazil
- Cesar Higa Nomura
- Instituto de Radiologia, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, Brazil
- Marco Antonio Gutierrez
- Instituto do Coração—Divisão de Pneumologia, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, Brazil
- Adriana L Araújo
- Bruno F Guedes
- Carolina S Lázari
- Cassiano C Antonio
- Claudia C Leite
- Emmanuel A Burdmann
- Euripedes C Miguel
- Fabio R Pinna
- Fabiane Y O Kawano
- Geraldo F Busatto
- Giovanni G Cerri
- Heraldo P Souza
- Izabel C Rios
- Larissa S Oliveira
- Linamara R Batisttella
- Luiz Henrique M Castro
- Marcello M C Magri
- Maria Cassia J M Corrêa
- Maria Cristina P B Francisco
- Maura S Oliveira
- Orestes V Forlenza
- Ricardo F Bento
- Rodolfo F Damiano
- Rossana P Francisco
- Solange R G Fusco
- Tarcisio E P Barros-Filho
- Wilson J Filho
- DOI
- https://doi.org/10.1136/bmjopen-2021-059110
- Journal volume & issue
-
Vol. 12,
no. 6
Abstract
Objective This study aimed to propose a simple, accessible and low-cost predictive clinical model to detect lung lesions due to COVID-19 infection.Design This prospective cohort study included COVID-19 survivors hospitalised between 30 March 2020 and 31 August 2020 followed-up 6 months after hospital discharge. The pulmonary function was assessed using the modified Medical Research Council (mMRC) dyspnoea scale, oximetry (SpO2), spirometry (forced vital capacity (FVC)) and chest X-ray (CXR) during an in-person consultation. Patients with abnormalities in at least one of these parameters underwent chest CT. mMRC scale, SpO2, FVC and CXR findings were used to build a machine learning model for lung lesion detection on CT.Setting A tertiary hospital in Sao Paulo, Brazil.Participants 749 eligible RT-PCR-confirmed SARS-CoV-2-infected patients aged ≥18 years.Primary outcome measure A predictive clinical model for lung lesion detection on chest CT.Results There were 470 patients (63%) that had at least one sign of pulmonary involvement and were eligible for CT. Almost half of them (48%) had significant pulmonary abnormalities, including ground-glass opacities, parenchymal bands, reticulation, traction bronchiectasis and architectural distortion. The machine learning model, including the results of 257 patients with complete data on mMRC, SpO2, FVC, CXR and CT, accurately detected pulmonary lesions by the joint data of CXR, mMRC scale, SpO2 and FVC (sensitivity, 0.85±0.08; specificity, 0.70±0.06; F1-score, 0.79±0.06 and area under the curve, 0.80±0.07).Conclusion A predictive clinical model based on CXR, mMRC, oximetry and spirometry data can accurately screen patients with lung lesions after SARS-CoV-2 infection. Given that these examinations are highly accessible and low cost, this protocol can be automated and implemented in different countries for early detection of COVID-19 sequelae.