Alexandria Engineering Journal (Dec 2022)

Multimodal cloud resources utilization forecasting using a Bidirectional Gated Recurrent Unit predictor based on a power efficient Stacked denoising Autoencoders

  • Hamzaoui Ikhlasse,
  • Duthil Benjamin,
  • Courboulay Vincent,
  • Medromi Hicham

Journal volume & issue
Vol. 61, no. 12
pp. 11565 – 11577

Abstract

Read online

To reap the advantages of many continual growing cloud services, cloud industries should adopt smart and holistic resources scheduling strategies. By deploying efficient deep learning technologies, many chaotic cloud traffics’ potential issues may be solved. Toward efficient cloud instances rightsizing and scheduling, we adopt in this paper a new Bidirectional Gated Recurrent Unit predictor based on a power efficient Stacked Denoising Autoencoders to forecast simultaneously future hourly virtual CPU, memory, and storage utilizations. Using various data ranges of resources under three AWS instances families, the best forecasting results achieved so far [1,83,30,78,331,11] of mean RMSE values and [1,37,21,63,245,13] of mean MAE values while predicting respectively future vCPU, memory, and storage utilizations. In addition, the proposed model also proved its precision stability and outperformance over the three considered SDAE-GRU, SDAE-LSTM and BiGRU benchmark models. Given the neglected power consumption measurement noticed in most related studies, we eventually validated the proposed predictor’s power efficiency by measuring in addition its real time consumed power in watt and temperature throughout the training process duration. The proposed predictor decreased the average consumed power by 5% compared to a classical sparse AE-BiGRU.

Keywords