Remote Sensing (Jun 2022)

Deep-Sea Seabed Sediment Classification Using Finely Processed Multibeam Backscatter Intensity Data in the Southwest Indian Ridge

  • Qiuhua Tang,
  • Jie Li,
  • Deqiu Ding,
  • Xue Ji,
  • Ningning Li,
  • Lei Yang,
  • Weikang Sun

DOI
https://doi.org/10.3390/rs14112675
Journal volume & issue
Vol. 14, no. 11
p. 2675

Abstract

Read online

In 2007, China discovered a hydrothermal anomaly in the Longqi hydrothermal area of the Southwest Indian Ridge. It was the first seabed hydrothermal area discovered in the ultraslow spreading ocean ridge in the world. Understanding the types of seabed sediments in this area is critical for studying the typical topography and geological characteristics of deep-sea seabed hydrothermal areas. The traditional classification of deep-seabed sediments adopts box sampling or gravity column sampling and identifies the types of seabed sediments through laboratory analysis. However, this classification method has some shortcomings, such as the presence of discrete sampling data points and the failure of full-coverage detection. The geological sampling in deep-sea areas is particularly inefficient. Hence, in this study, the EM122 multibeam sonar data collected in the Longqi hydrothermal area, Southwest Indian Ridge, in April 2019 are used to analyze multibeam backscatter intensity. Considering various errors in the complex deep-sea environment, obtaining backscatter intensity data can truly reflect seabed sediment types. Through unsupervised and supervised classification, the seabed sediment classification in the Longqi hydrothermal area was studied. The results showed that the accuracy of supervised classification is higher than that of unsupervised classification. Thus, unsupervised classification is primarily used for roughly classifying sediment types without on-site geological sampling. Combining the genetic algorithm (GA) and the support vector machine (SVM) neural network, deep-sea sediment types, such as deep-sea clay and calcareous ooze, can be identified rapidly and efficiently. Based on comparative analysis results, the classification accuracy of the GA-SVM neural network is higher than that of the SVM neural network, and it can be effectively applied to the high-precision classification and recognition of deep-sea sediments. In this paper, we demonstrate the fine-scale morphology and surface sediment structure characteristics of the deep-sea seafloor by finely processing high-precision deep-sea multibeam backscatter intensity data. This research can provide accurate seabed topography and sediment data for the exploration of deep-sea hydrothermal resources and the assessment of benthic habitats in deep-sea hydrothermal areas.

Keywords