Applied Sciences (Feb 2020)

Accuracy Evaluation of Geoid Heights in the National Control Points of South Korea Using High-Degree Geopotential Model

  • Kwang Bae Kim,
  • Hong Sik Yun,
  • Ha Jung Choi

DOI
https://doi.org/10.3390/app10041466
Journal volume & issue
Vol. 10, no. 4
p. 1466

Abstract

Read online

Precise geoid heights are not as important for understanding Earth’s gravity field, but they are important to geodesy itself, since the vertical datum is defined as geoid in a cm-level accuracy. Several high-degree geopotential models have been derived lately by using satellite tracking data such as those from Gravity Recovery and Climate Experiment (GRACE) and Gravity Field and Steady-State Ocean Circulation Explorer (GOCE), satellite altimeter data, and terrestrial and airborne gravity data. The Korean national geoid (KNGeoid) models of the National Geographic Information Institute (NGII) were developed using the latest global geopotential models (GGMs), which are combinations of gravity data from satellites and land gravity data. In this study, geoid heights calculated from the latest high-degree GGMs were used to evaluate the accuracy of the three GGMs (European Improved Gravity model of Earth by New techniques (EIGEN)-6C4, Earth Gravitational Model 2008 (EGM2008), and GOCE-EGM2008 combined model (GECO)) by comparing them with the geoid heights derived from the Global Navigation Satellite System (GNSS)/leveling of the 1182 unified control points (UCPs) that have been installed by NGII in South Korea since 2008. In addition, the geoid heights derived from the KNGeoid models were compared with the geoid heights derived from the GNSS/leveling of the 1182 UCPs to assess the accuracy of the KNGeoid models in terms of relative geoid heights for further gravimetric geoid determination studies in South Korea. As a result, the EGM2008 model could be selected as the suitable GGM from among the three GGMs for determining a gravimetric geoid model for South Korea.

Keywords