Brazilian Journal of Medical and Biological Research (Jan 2005)

The terrestrial Gastropoda Megalobulimus abbreviatus as a useful model for nociceptive experiments: effects of morphine and naloxone on thermal avoidance behavior

  • M. Achaval,
  • M.A.P. Penha,
  • A. Swarowsky,
  • P. Rigon,
  • L.L. Xavier,
  • G.G. Viola,
  • D.M. Zancan

DOI
https://doi.org/10.1590/S0100-879X2005000100012
Journal volume & issue
Vol. 38, no. 1
pp. 73 – 80

Abstract

Read online

We describe the behavior of the snail Megalobulimus abbreviatus upon receiving thermal stimuli and the effects of pretreatment with morphine and naloxone on behavior after a thermal stimulus, in order to establish a useful model for nociceptive experiments. Snails submitted to non-functional (22ºC) and non-thermal hot-plate stress (30ºC) only displayed exploratory behavior. However, the animals submitted to a thermal stimulus (50ºC) displayed biphasic avoidance behavior. Latency was measured from the time the animal was placed on the hot plate to the time when the animal lifted the head-foot complex 1 cm from the substrate, indicating aversive thermal behavior. Other animals were pretreated with morphine (5, 10, 20 mg/kg) or naloxone (2.5, 5.0, 7.5 mg/kg) 15 min prior to receiving a thermal stimulus (50ºC; N = 9 in each group). The results (means ± SD) showed an extremely significant difference in response latency between the group treated with 20 mg/kg morphine (63.18 ± 14.47 s) and the other experimental groups (P < 0.001). With 2.5 mg/kg (16.26 ± 3.19 s), 5.0 mg/kg (11.53 ± 1.64 s) and 7.5 mg/kg naloxone (7.38 ± 1.6 s), there was a significant, not dose-dependent decrease in latency compared to the control (33.44 ± 8.53 s) and saline groups (29.1 ± 9.91 s). No statistically significant difference was found between the naloxone-treated groups. With naloxone plus morphine, there was a significant decrease in latency when compared to all other groups (minimum 64% in the saline group and maximum 83.2% decrease in the morphine group). These results provide evidence of the involvement of endogenous opioid peptides in the control of thermal withdrawal behavior in this snail, and reveal a stereotyped and reproducible avoidance behavior for this snail species, which could be studied in other pharmacological and neurophysiological studies.

Keywords