In this work, we synthesized monodispersed CdSe quantum dots (QDs) by a microfluidic method and via a bulk reaction. The structures of the CdSe QDs were characterized by X-ray powder diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). The optical properties of the prepared CdSe QDs were determined using ultraviolet-visible absorption spectroscopy and photoluminescence spectroscopy. The CdSe QDs obtained by the microfluidic method have a faster crystal growth rate and a higher absolute photoluminescence quantum yield than those obtained via the bulk reaction. Additionally, we investigated the growth process of the CdSe QDs with increasing residence times.