Annals of Hepatology (Sep 2022)

Circ_0000291 contributes to hepatocellular carcinoma tumorigenesis by binding to miR-1322 to up-regulate UBE2T

  • Fang Wang,
  • Shanshan Zhong,
  • Chunjie Mao,
  • Jingbo Jin,
  • Haifeng Wang

Journal volume & issue
Vol. 27, no. 5
p. 100722

Abstract

Read online

Introduction and objectives: Circular RNAs (circRNAs) are identified to show important regulatory functions in cancer biology. We attempted to analyze the role of circ_0000291 in hepatocellular carcinoma (HCC) progression and its related mechanism. Methods: The circular characteristic of circ_0000291 was tested using exonuclease RNase R. Cell proliferation was analyzed by 5-Ethynyl-2’-deoxyuridine (EdU) incorporation and colony formation assays. Cell apoptosis was measured by flow cytometry and a caspase 3 activity assay kit. Transwell assays were performed to analyze cell migration and invasion abilities. Sphere formation assay was conducted to analyze cell stemness. Dual-luciferase reporter and RNA-pull down assays were conducted to verify the interaction between microRNA-1322 (miR-1322) and circ_0000291 or ubiquitin conjugating enzyme E2 T (UBE2T). Results: Circ_0000291 was markedly up-regulated in HCC tissues and cell lines. HCC patients with high expression of circ_0000291 displayed a low survival rate. Circ_0000291 knockdown restrained the proliferation, migration, invasion, and stemness and induced the apoptosis of HCC cells. Circ_0000291 directly interacted with miR-1322 and negatively regulated miR-1322 expression. Circ_0000291 knockdown-mediated anti-tumor impacts in HCC cells were largely overturned by the interference of miR-1322. miR-1322 directly paired with the 3’ untranslated region (3’UTR) of UBE2T, and UBE2T was negatively regulated by miR-1322. UBE2T overexpression largely reversed circ_0000291 silencing-induced effects in HCC cells. Circ_0000291 positively regulated UBE2T expression by absorbing miR-1322 in HCC cells. Circ_0000291 silencing notably reduced the tumorigenic potential in vivo. Conclusion: Circ_0000291 facilitated HCC progression by targeting miR-1322/UBE2T axis, which provided novel potential biomarkers and targets for HCC patients.

Keywords