تحقیقات جنگل و صنوبر ایران (Mar 2018)

Monthly changes in the quantity of throughfall and water infiltration of litter in Hyrcanian forest stands

  • Hashem Habashi,
  • Ramin Rahmani,
  • Khosro Sagheb-Talebi,
  • Elham Shabani

DOI
https://doi.org/10.22092/ijfpr.2018.116144
Journal volume & issue
Vol. 26, no. 1
pp. 93 – 103

Abstract

Read online

The canopy architecture of different forest trees results in different species interception, quantity and quality of litterfall. Litterfall characteristics affect thickness of organic layer, water storage potential and runoff due to different decomposition rate in habitat conditions. Furthermore, throughfall content and water infiltration of litter are different through time as a result of differences in the evapotranspiration potential, leaf area index (LAI), canopy coverage, tree diameter, stand stages and other geographic factors. This paper was aimed to examine throughfall and water infiltrated of litter changes amongst three important species of Hyrcanian forest over a year. For this purpose, individual hornbeam (Carpinus betulus L.), velvet maple (Acer velutinum Boiss.) and chestnut-leaved oak (Quercus castaneifolia C. A. Mey.) species were selected in a mixed stand in Shast-Kalateh Forest, and quantity of water passing through the canopy of individual tree and organic litter layer beneath them were investigated with 9 throughfall collectors and 18 forest floor infiltration collectors after each rainfall event over a year. The results showed that species and times are two important factors in changing water balance. The hornbeam and maple species have the most throughfall and litter water contents, respectively (hornbeam with 71.1 % of throughfall and maple with 40.5 % of water infiltration of litter). The litter water infiltration of hornbeam and velvet maple in non-growing season were higher compared to the growing season, while throughfall showed no significant difference. The results of this study are concluded to be helpful for managers to regulate the stand composition as a reaction to the increasing water crisis.

Keywords