IEEE Access (Jan 2020)

Three-Port Optical Phase-Shifters and Modulators With Ultra-High Modulation Efficiency, Positive RF-Linking Gain, and Low Residual Amplitude Modulation

  • Rui Lin Chao,
  • Zohauddin Ahmad,
  • Jyehong Chen,
  • Yinchieh Lai,
  • Jin-Wei Shi

DOI
https://doi.org/10.1109/ACCESS.2020.2990956
Journal volume & issue
Vol. 8
pp. 80836 – 80841

Abstract

Read online

A three-port optical phase-shifter and Mach-Zehnder modulator (MZM) based on PNP-type bipolar junction transistor (BJT) is demonstrated. Significant plasma (injected carrier) induced changes of the refractive index for the optical waveguide become possible with an extremely small driving-voltage and a compact device size during operation of this BJT between the saturation and forward active modes. Devices with a standard MZM structure and a small foot-print (0.5 mm) exhibit a moderate optical insertion loss (2 dB), extremely small Vπ (0.18V) and Pπ (0.21mW), fast rise/fall time (~1ns), and a residue-amplitudemodulation (RAM) as small as 0.18 dB. Furthermore, thanks to the ultra-high modulation efficiency characteristic of our device, a +4.0 dB net RF-linking gain can be obtained under dynamic operation. Compared to 2-port (base-collector) forward bias operation, under three-port operation, the extra bias current from the base-emitter junction provides a lower Vπ (0.18 vs. 0.22 V), a smaller RAM (0.18 vs. 0.6 dB), and a larger RF-linking gain (+4 vs. -3.2 dB). The superior performances of the three-port to two-port operations can be attributed to the additional forward bias B-E junction being able to provide more injected carriers to induce stronger plasma effects for optical phase-shifting.

Keywords