Applied Sciences (May 2023)
A Decision Tree for Rockburst Conditions Prediction
Abstract
This paper presents an alternative approach to predict rockburst using Machine Learning (ML) algorithms. The study used the Decision Tree (DT) algorithm and implemented two approaches: (1) using DT model for each rock type (DT-RT), and (2) developing a single DT model (Unique-DT) for all rock types. A dataset containing 210 records was collected. Training and testing were performed on this dataset with 5 input variables, which are: Rock Type, Depth, Brittle Index (BI), Stress Index (SI), and Elastic Energy Index (EEI). Other ML algorithms, such as Random Forest (RF), Support Vector Machine (SVM), Artificial Neural Network (ANN), K-Nearest Neighbor (KNN), and Gradient-Boosting (AdaboostM1), were implemented as a form of comparison to the DT models developed. The evaluation metrics and relative importance were utilized to examine some characteristics of the DT methods. The Unique-DT model showed a promising result of the two DT models, giving an average of (F1 = 0.65) in rockburst condition prediction. Although RF and AdaboostM1 (F1 = 0.66) performed slightly better, Unique-DT is recommended for predicting rockburst conditions because it is easier, more effective, and more accurate.
Keywords