IEEE Access (Jan 2022)
RAILS: A Robust Adversarial Immune-Inspired Learning System
Abstract
Adversarial attacks against deep neural networks (DNNs) are continuously evolving, requiring increasingly powerful defense strategies. We develop a novel adversarial defense framework inspired by the adaptive immune system: the Robust Adversarial Immune-inspired Learning System (RAILS). Initializing a population of exemplars that is balanced across classes, RAILS starts from a uniform label distribution that encourages diversity and uses an evolutionary optimization process to adaptively adjust the predictive label distribution in a manner that emulates the way the natural immune system recognizes novel pathogens. RAILS’ evolutionary optimization process explicitly captures the tradeoff between robustness (diversity) and accuracy (specificity) of the network, and represents a new immune-inspired perspective on adversarial learning. The benefits of RAILS are empirically demonstrated under eight types of adversarial attacks on a DNN adversarial image classifier for several benchmark datasets, including: MNIST; SVHN; CIFAR-10; and CIFAR-10. We find that PGD is the most damaging attack strategy and that for this attack RAILS is significantly more robust than other methods, achieving improvements in adversarial robustness by $\geq 5.62\%, 12.5\%$ , 10.32%, and 8.39%, on these respective datasets, without appreciable loss of classification accuracy. Codes for the results in this paper are available at https://github.com/wangren09/RAILS.
Keywords