Energies (Mar 2023)

Development of Microencapsulation-Hybrid Jig Separation Technique as a Clean Coal Technology

  • Theerayut Phengsaart,
  • Ilhwan Park,
  • Jirathpapol Pasithbhattarabhorn,
  • Palot Srichonphaisarn,
  • Chinawich Kertbundit,
  • Nutthakarn Phumkokrux,
  • Onchanok Juntarasakul,
  • Carlito Baltazar Tabelin,
  • Naoki Hiroyoshi,
  • Mayumi Ito

DOI
https://doi.org/10.3390/en16052432
Journal volume & issue
Vol. 16, no. 5
p. 2432

Abstract

Read online

In this study, the microencapsulation-hybrid jig separation technique was developed to improve the separation efficiency of pyrite and coal in the particle size range of 1–4 mm where conventional jig separation becomes inefficient. A hybrid jig is a gravity concentrator combining the concepts of jig separation and flotation to stratify particles based on their apparent specific gravity. Meanwhile, microencapsulation—a technique that encapsulates target materials with a protective coating—was applied to render pyrite hydrophilic and improve its separation from hydrophobic coal. The results showed that the required time for separation in the hybrid jig (0.5 min) was shorter than in conventional jig (2 min). Moreover, the effects of particle size on separation efficiency were reduced when a hybrid jig is used. However, the separation efficiency of hybrid jig separation was lower than that of the conventional jig because attachment of bubbles occurred to both pyrite and coal, which are hydrophobic. Using the microencapsulation-hybrid jig separation technique, the separation of coal and pyrite was significantly improved (~100%) because of the formation of hydrophilic iron phosphate coatings on pyrite that limited bubble attachment. This means that microencapsulation-hybrid jig separation is a promising clean coal technology that not only enhances the separation efficiency of the hybrid jig but also passivates pyrite and limits AMD formation in the tailings/rejects.

Keywords