Advanced Science (May 2022)

A Vehicle‐Free Antimicrobial Polymer Hybrid Gold Nanoparticle as Synergistically Therapeutic Platforms for Staphylococcus aureus Infected Wound Healing

  • Xiaojun He,
  • Lixiong Dai,
  • Lisong Ye,
  • Xiaoshuai Sun,
  • Obeng Enoch,
  • Rongdang Hu,
  • Xingjie Zan,
  • Feng Lin,
  • Jianliang Shen

DOI
https://doi.org/10.1002/advs.202105223
Journal volume & issue
Vol. 9, no. 14
pp. n/a – n/a

Abstract

Read online

Abstract Pathogenic bacteria infection is a serious threat to human public health due to the high morbidity and mortality rates. Nano delivery system for delivering antibiotics provides an alternative option to improve the efficiency compared to conventional therapeutic agents. In addition to the drug loading capacity of nanocarriers, which is typically around 10%, further lowers the drug dose that pathological bacteria are exposed to. Moreover, nanocarriers that are not eliminated from the body may cause side effects. These limitations have motivated the development of self‐delivery systems that are formed by the self‐assembly of different therapeutic agents. In this study, a vehicle‐free antimicrobial polymer polyhexamethylene biguanide (PHMB, with bactericidal and anti‐biofilm functions) hybrid gold nanoparticle (Au NPs, with photothermal therapy (PTT)) platform (PHMB@Au NPs) is developed. This platform exhibits an excellent synergistic effect to enhance the photothermal bactericidal effect for Staphylococcus aureus under near‐infrared irradiation. Furthermore, the results showed that PHMB@Au NPs inhibit the formation of biofilms, quickly remove bacteria to promote wound healing through PTT in infection model in vivo, and even mediate the transition of macrophages from M1 to M2 type, and accelerate tissue angiogenesis. PHMB@Au NPs will have promising value as highly effective antimicrobial agents for patient management.

Keywords