Annals of Glaciology (Dec 2019)

Characterization of glacial silt and clay using automated mineralogy

  • Jeff W. Crompton,
  • Gwenn E. Flowers,
  • Brendan Dyck

DOI
https://doi.org/10.1017/aog.2019.45
Journal volume & issue
Vol. 60
pp. 49 – 65

Abstract

Read online

Glacial erosion produces vast quantities of fine-grained sediment that has a far-reaching impact on Earth surface processes. To gain a better understanding of the production of glacial silt and clay, we use automated mineralogy to quantify the microstructure and mineralogy of rock and sediment samples from 20 basins in the St. Elias Mountains, Yukon, Canada. Sediments were collected from proglacial streams, while rock samples were collected from ice marginal outcrops and fragmented using electrical pulse disaggregation. For both rock fragments and sediments, we observe a log-normal distribution of grain sizes and a sub-micrometer terminal grain size. We find that the abrasion of silt and clay results in both rounding and the exploitation of through-going fractures. The abundance of inter- versus intragranular fractures depends on mineralogy and size. Unlike the relatively larger grains, where crushing and abrasion are thought to exploit and produce discrete populations of grain sizes, the comminution of fines leads to a grain size, composition and rounding that is continuously distributed across size, and highly dependent on source-rock properties.

Keywords