Ecotoxicology and Environmental Safety (Feb 2023)

In silico and in vivo assessment of developmental toxicity, oxidative stress response & Na+/K+-ATPase activity in zebrafish embryos exposed to cypermethrin

  • Priya Gupta,
  • Archisman Mahapatra,
  • Anjali Suman,
  • Rahul Kumar Singh

Journal volume & issue
Vol. 251
p. 114547

Abstract

Read online

Cypermethrin (CYP), a synthetic type II pyrethroid pesticide, is extensively used to control pests in industrial, domestic, and agricultural environments. However, its indiscriminate use leads to a potential threat to aquatic organisms. Although several reports focussed on developmental toxicity effects, a concise study combining cardiotoxicity along with Na+/K+-ATPase activity and molecular docking of developmental proteins with CYP was lacking. This present study was designed to address this gap to comprehend the impact of CYP exposure (0, 25, 100 and 200 µg/L) on embryonic zebrafish. As a result, CYP delayed the hatching rate, reduced heart rate, increased mortality rate and induced numerous morphological abnormalities. Subsequently, CYP induced oxidative stress in treated zebrafish embryos with the concomitant increase in antioxidant enzymes (SOD and CAT) and malondialdehyde production. In addition, an alteration in AChE, NO content and Na+/K+-ATPase activity was observed, suggesting a disruption in cardiac development and ion regulation. Furthermore, AO staining showed notable apoptotic cells which are supported by alteration in apoptosis-related gene expressions. Moreover, to explore the putative targets of CYP, computational docking with developmental proteins (WNT3A, WNT8A, GATA-4, Nkx 2–5 and ZHE1) showed strong interactions and binding. Taken together, our findings provide a better understanding of assessing the ecotoxicological risk information and the mode of action underlying the development of teleost fishes following CYP exposure. Meanwhile, the pioneering nature of this study is to emphasize the future use of Na+/K+-ATPase activity as a potential toxicity biomarker and in silico molecular docking studies to complement developmental toxicity findings.

Keywords