BMC Medical Informatics and Decision Making (Feb 2024)

Acute kidney injury comorbidity analysis based on international classification of diseases-10 codes

  • Menglu Wang,
  • Guangjian Liu,
  • Zhennan Ni,
  • Qianjun Yang,
  • Xiaojun Li,
  • Zhisheng Bi

DOI
https://doi.org/10.1186/s12911-024-02435-0
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Objective Acute kidney injury (AKI) is a clinical syndrome that occurs as a result of a dramatic decline in kidney function caused by a variety of etiological factors. Its main biomarkers, serum creatinine and urine output, are not effective in diagnosing early AKI. For this reason, this study provides insight into this syndrome by exploring the comorbidities of AKI, which may facilitate the early diagnosis of AKI. In addition, organ crosstalk in AKI was systematically explored based on comorbidities to obtain clinically reliable results. Methods We collected data from the Medical Information Mart for Intensive Care-IV database on patients aged $$\ge$$ ≥ 18 years in intensive care units (ICU) who were diagnosed with AKI using the criteria proposed by Kidney Disease: Improving Global Outcomes. The Apriori algorithm was used to mine association rules on the diagnoses of 55,486 AKI and non-AKI patients in the ICU. The comorbidities of AKI mined were validated through the Electronic Intensive Care Unit database, the Colombian Open Health Database, and medical literature, after which comorbidity results were visualized using a disease network. Finally, organ diseases were identified and classified from comorbidities to investigate renal crosstalk with other distant organs in AKI. Results We found 579 AKI comorbidities, and the main ones were disorders of lipoprotein metabolism, essential hypertension, and disorders of fluid, electrolyte, and acid-base balance. Of the 579 comorbidities, 554 were verifiable and 25 were new and not previously reported. In addition, crosstalk between the kidneys and distant non-renal organs including the liver, heart, brain, lungs, and gut was observed in AKI with the strongest heart-kidney crosstalk, followed by lung-kidney crosstalk. Conclusion The comorbidities mined in this study using association rules are scientific and may be used for the early diagnosis of AKI and the construction of AKI predictive models. Furthermore, the organ crosstalk results obtained through comorbidities may provide supporting information for the management of short- and long-term treatment practices for organ dysfunction.

Keywords