Hydrology (Sep 2024)
Adaptive Operating Rules for Flood Control of a Multi-Purpose Reservoir
Abstract
Almost all multipurpose reservoirs in Romania were put into operation 30–50 years ago or even earlier. Meanwhile, a large volume of hydrologic data has been collected, and the initial design flood should be reconsidered. Consequently, the operating rules of flow control structures (bottom gates and weir gates) should be re-examined, mainly for medium and low-frequency floods. The design flood is not unique, being characterized by different shapes and time to peak, which has consequences for flood mitigation rules. Identifying the critical design flood is an important preliminary step, although it is usually neglected in flood management. Simulating the operation of the Stânca–Costești reservoir on the Prut River, it was found that the design flood corresponding to the maximum value of the compactness coefficient is the most difficult to mitigate considering the specific conditions of the dam and the reservoir: the prescribed conservation level in the reservoir, and the design flood volume of medium and rare floods that far exceeds the flood control volume. These conditions can jeopardize both dam safety and downstream flood protection. The main steps of the proposed approach are as follows: (1) developing the hydraulic model; (2) statistical processing of the registered floods and defining critical design floods for different AEPs (Annual Exceedance Probabilities); (3) deriving optimal operation rules based on a simulation-optimization model; (4) implementing real-time adaptive operation of the mechanical outlets; and (5) critically assessing the operating rules after the event. Based on the hydrological forecast, if necessary, new outlets are put into operation while keeping the ones already activated. Based on the hydrological forecast and properly operated, the safety of the Stânca–Costești dam is guaranteed even in the event of a 0.1% CC (Climate Change) flood. However, for floods greater than 1% magnitude, the carrying capacity of the downstream riverbed is exceeded. The main gaps addressed in this paper are the following: (1) the establishment of critical design floods, and (2) the adaptive operating rules of outlet devices aimed at optimizing flood control results, using short-term flood forecasts.
Keywords