iScience (Nov 2022)

Kinesin-2 motors differentially impact biogenesis of extracellular vesicle subpopulations shed from sensory cilia

  • Michael Clupper,
  • Rachael Gill,
  • Malek Elsayyid,
  • Denis Touroutine,
  • Jeffrey L. Caplan,
  • Jessica E. Tanis

Journal volume & issue
Vol. 25, no. 11
p. 105262

Abstract

Read online

Summary: Extracellular vesicles (EVs) are bioactive lipid-bilayer enclosed particles released from nearly all cells. One specialized site for EV shedding is the primary cilium. Here, we discover the conserved ion channel CLHM-1 as a ciliary EV cargo. Imaging of EVs released from sensory neuron cilia of Caenorhabditis elegans expressing fluorescently tagged CLHM-1 and TRP polycystin-2 channel PKD-2 shows enrichment of these cargoes in distinct EV subpopulations that are differentially shed in response to mating partner availability. PKD-2 alone is present in EVs shed from the cilium distal tip, whereas CLHM-1 EVs bud from a secondary site(s), including the ciliary base. Heterotrimeric and homodimeric kinesin-2 motors have discrete impacts on PKD-2 and CLHM-1 colocalization in both cilia and EVs. Total loss of kinesin-2 activity decreases shedding of PKD-2 but not CLHM-1 EVs. Our data demonstrate that anterograde intraflagellar transport is required for selective enrichment of protein cargoes into heterogeneous EVs with different signaling potentials.

Keywords