Materials Today Bio (Jun 2023)

Non-viral gene therapy using RNA interference with PDGFR-α mediated epithelial-mesenchymal transformation for proliferative vitreoretinopathy

  • Jiahao Wang,
  • Peiyi Zhao,
  • Zhirong Chen,
  • Hui Wang,
  • Yajia Wang,
  • Quankui Lin

Journal volume & issue
Vol. 20
p. 100632

Abstract

Read online

Fibrotic eye diseases, a series of severe oculopathy, that will destroy normal ocular refractive media and imaging structures. It is characterized by the transformation of the epithelial cells into mesenchyme cells. Proliferative vitreoretinopathy (PVR) is one of these representative diseases. In this investigation, polyethylene glycol grafted branched Polyethyleneimine (PEI-g-PEG) was used as a non-viral gene vector in gene therapy of PVR to achieve anti-fibroblastic effects in vitro and in vivo by interfering with platelet-derived growth factor alpha receptor (PDGFR-α) in the epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells. The plasmid was wrapped by electrostatic conjugation. Physical characterization of the complexes indicated that the gene complexes were successfully prepared. In vitro, cellular experiments showed excellent biocompatibility of PEI-g-PEG, efficient cellular uptake of the gene complexes, and successful expression of the corresponding fragments. Through gene silencing technique, PEI-g-PEG/PDGFR-α shRNA successfully inhibited the process of EMT in vitro. Furthermore, in vivo animal experiments suggested that this method could effectively inhibit the progression of fibroproliferative membranes of PVR. Herein, a feasible and promising clinical idea was provided for developing non-viral gene vectors and preventing fibroblastic eye diseases by RNA interference (RNAi) technology.

Keywords