Cell Reports (Aug 2024)

PARP1-driven repair of topoisomerase IIIα DNA-protein crosslinks by FEN1

  • Liton Kumar Saha,
  • Yilun Sun,
  • Sourav Saha,
  • Xi Yang,
  • Yves Pommier

Journal volume & issue
Vol. 43, no. 8
p. 114522

Abstract

Read online

Summary: Persistent DNA-protein crosslinks formed by human topoisomerase IIIα (TOP3A-DPCs) interfere with DNA metabolism and lead to genome damage and cell death. Recently, we demonstrated that such abortive TOP3A-DPCs are ubiquitylated and proteolyzed by Spartan (SPRTN). Here, we identify transient poly(ADP-ribosylation) (PARylation) in addition to ubiquitylation as a signaling mechanism for TOP3A-DPC repair and provide evidence that poly(ADP-ribose) polymerase 1 (PARP1) drives the repair of TOP3A-DPCs by recruiting flap endonuclease 1 (FEN1) to the TOP3A-DPCs. We find that blocking PARylation attenuates the interaction of FEN1 and TOP3A and that TOP3A-DPCs accumulate in cells with compromised PARP1 activity and in FEN1-deficient cells. We also show that PARP1 suppresses TOP3A-DPC ubiquitylation and that inhibiting the ubiquitin-activating enzyme E1 (UBE1) increases TOP3A-DPCs, consistent with ubiquitylation serving as a signaling mechanism for TOP3A-DPC repair mediated by SPRTN and TDP2. We propose that two concerted pathways repair TOP3A-DPCs: PARylation-driven FEN1 excision and ubiquitylation-driven SPRTN-TDP2 excision.

Keywords