Cell Transplantation (Jan 2007)
Long-Term Maintenance of the Drug Transport Activity in Cryopreservation of Microencapsulated Rat Hepatocytes
Abstract
Transplantation of isolated hepatocytes has been proposed to compensate for essential functions lacking in liver failure or for genetic defects that alter a specific liver metabolic pathway. Hepatocyte utilization for these purposes would be facilitated with a reliable, reproducible, and effective method of long-term hepatocyte storage. We have recently developed a simple new system for cryopreservation of hepatocytes that encapsulates alginate microspheres and maintains liver-specific function. The aim of this study was to elucidate the transport and drug-metabolizing enzyme activities of cryopreserved microencapsulated hepatocytes stored for a long time. Morphological examinations showed there is no apparent injury of the hepatocytes during cryopreservation processes. A drug-metabolizing enzyme (testosterone 6β-hydroxylase, a specific probe for CYP3A2) and drug transport activities [salicylate, allopurinol, and prostaglandin E 2 (PGE 2 ), typical substrates of rOat2] in cryopreserved microencapsulated hepatocytes were maintained up to 120 days. Our results thus demonstrate for the first time that cryopreservation of primary rat hepatocytes by the encapsulation technique allows long-term retention of drug metabolism and drug transport activities.