Atmospheric Chemistry and Physics (Jan 2018)
Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation
- C. Frege,
- I. K. Ortega,
- M. P. Rissanen,
- A. P. Praplan,
- G. Steiner,
- G. Steiner,
- G. Steiner,
- M. Heinritzi,
- L. Ahonen,
- A. Amorim,
- A.-K. Bernhammer,
- A.-K. Bernhammer,
- F. Bianchi,
- F. Bianchi,
- S. Brilke,
- S. Brilke,
- S. Brilke,
- M. Breitenlechner,
- M. Breitenlechner,
- L. Dada,
- A. Dias,
- J. Duplissy,
- J. Duplissy,
- S. Ehrhart,
- S. Ehrhart,
- I. El-Haddad,
- L. Fischer,
- C. Fuchs,
- O. Garmash,
- M. Gonin,
- A. Hansel,
- A. Hansel,
- C. R. Hoyle,
- T. Jokinen,
- H. Junninen,
- H. Junninen,
- J. Kirkby,
- J. Kirkby,
- A. Kürten,
- K. Lehtipalo,
- K. Lehtipalo,
- M. Leiminger,
- M. Leiminger,
- R. L. Mauldin,
- R. L. Mauldin,
- U. Molteni,
- L. Nichman,
- T. Petäjä,
- N. Sarnela,
- S. Schobesberger,
- S. Schobesberger,
- M. Simon,
- M. Sipilä,
- D. Stolzenburg,
- A. Tomé,
- A. L. Vogel,
- A. L. Vogel,
- A. C. Wagner,
- R. Wagner,
- M. Xiao,
- C. Yan,
- P. Ye,
- P. Ye,
- J. Curtius,
- N. M. Donahue,
- R. C. Flagan,
- M. Kulmala,
- D. R. Worsnop,
- D. R. Worsnop,
- D. R. Worsnop,
- P. M. Winkler,
- J. Dommen,
- U. Baltensperger
Affiliations
- C. Frege
- Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, Switzerland
- I. K. Ortega
- ONERA – The French Aerospace Lab, 91123 Palaiseau, France
- M. P. Rissanen
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- A. P. Praplan
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- G. Steiner
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- G. Steiner
- University of Innsbruck, Institute of Ion Physics and Applied Physics, Technikerstraße 25, 6020 Innsbruck, Austria
- G. Steiner
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
- M. Heinritzi
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- L. Ahonen
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- A. Amorim
- Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisbon, Portugal
- A.-K. Bernhammer
- University of Innsbruck, Institute of Ion Physics and Applied Physics, Technikerstraße 25, 6020 Innsbruck, Austria
- A.-K. Bernhammer
- Ionicon Analytik GmbH, Eduard-Bodem Gasse 3, 6020 Innsbruck, Austria
- F. Bianchi
- Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, Switzerland
- F. Bianchi
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- S. Brilke
- University of Innsbruck, Institute of Ion Physics and Applied Physics, Technikerstraße 25, 6020 Innsbruck, Austria
- S. Brilke
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
- S. Brilke
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- M. Breitenlechner
- University of Innsbruck, Institute of Ion Physics and Applied Physics, Technikerstraße 25, 6020 Innsbruck, Austria
- M. Breitenlechner
- now at: Harvard University, School of Engineering and Applied Sciences, Cambridge, MA 02138, USA
- L. Dada
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- A. Dias
- Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisbon, Portugal
- J. Duplissy
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- J. Duplissy
- CERN, Geneva, Switzerland
- S. Ehrhart
- CERN, Geneva, Switzerland
- S. Ehrhart
- now at: Max-Planck Institute of Chemistry, Atmospheric Chemistry Department, 55128 Mainz, Germany
- I. El-Haddad
- Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, Switzerland
- L. Fischer
- University of Innsbruck, Institute of Ion Physics and Applied Physics, Technikerstraße 25, 6020 Innsbruck, Austria
- C. Fuchs
- Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, Switzerland
- O. Garmash
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- M. Gonin
- Tofwerk AG, 3600 Thun, Switzerland
- A. Hansel
- University of Innsbruck, Institute of Ion Physics and Applied Physics, Technikerstraße 25, 6020 Innsbruck, Austria
- A. Hansel
- Ionicon Analytik GmbH, Eduard-Bodem Gasse 3, 6020 Innsbruck, Austria
- C. R. Hoyle
- Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, Switzerland
- T. Jokinen
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- H. Junninen
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- H. Junninen
- University of Tartu, Institute of Physics, 50090 Tartu, Estonia
- J. Kirkby
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- J. Kirkby
- CERN, Geneva, Switzerland
- A. Kürten
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- K. Lehtipalo
- Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, Switzerland
- K. Lehtipalo
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- M. Leiminger
- University of Innsbruck, Institute of Ion Physics and Applied Physics, Technikerstraße 25, 6020 Innsbruck, Austria
- M. Leiminger
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- R. L. Mauldin
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- R. L. Mauldin
- Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado, 80309-0311, USA
- U. Molteni
- Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, Switzerland
- L. Nichman
- School of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
- T. Petäjä
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- N. Sarnela
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- S. Schobesberger
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- S. Schobesberger
- University of Eastern Finland, Department of Applied Physics, 70211 Kuopio, Finland
- M. Simon
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- M. Sipilä
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- D. Stolzenburg
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
- A. Tomé
- IDL – Universidade da Beira Interior, Av. Marquês D'Avila e Bolama, 6201-001 Covilhã, Portugal
- A. L. Vogel
- Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, Switzerland
- A. L. Vogel
- CERN, Geneva, Switzerland
- A. C. Wagner
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- R. Wagner
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- M. Xiao
- Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, Switzerland
- C. Yan
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- P. Ye
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
- P. Ye
- Aerodyne Research Inc., Billerica, Massachusetts, 01821, USA
- J. Curtius
- University of Innsbruck, Institute of Ion Physics and Applied Physics, Technikerstraße 25, 6020 Innsbruck, Austria
- N. M. Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
- R. C. Flagan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
- M. Kulmala
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- D. R. Worsnop
- University of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
- D. R. Worsnop
- University of Eastern Finland, Department of Applied Physics, 70211 Kuopio, Finland
- D. R. Worsnop
- Aerodyne Research Inc., Billerica, Massachusetts, 01821, USA
- P. M. Winkler
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
- J. Dommen
- Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, Switzerland
- U. Baltensperger
- Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, Switzerland
- DOI
- https://doi.org/10.5194/acp-18-65-2018
- Journal volume & issue
-
Vol. 18
pp. 65 – 79
Abstract
It was recently shown by the CERN CLOUD experiment that biogenic highly oxygenated molecules (HOMs) form particles under atmospheric conditions in the absence of sulfuric acid, where ions enhance the nucleation rate by 1–2 orders of magnitude. The biogenic HOMs were produced from ozonolysis of α-pinene at 5 °C. Here we extend this study to compare the molecular composition of positive and negative HOM clusters measured with atmospheric pressure interface time-of-flight mass spectrometers (APi-TOFs), at three different temperatures (25, 5 and −25 °C). Most negative HOM clusters include a nitrate (NO3−) ion, and the spectra are similar to those seen in the nighttime boreal forest. On the other hand, most positive HOM clusters include an ammonium (NH4+) ion, and the spectra are characterized by mass bands that differ in their molecular weight by ∼ 20 C atoms, corresponding to HOM dimers. At lower temperatures the average oxygen to carbon (O : C) ratio of the HOM clusters decreases for both polarities, reflecting an overall reduction of HOM formation with decreasing temperature. This indicates a decrease in the rate of autoxidation with temperature due to a rather high activation energy as has previously been determined by quantum chemical calculations. Furthermore, at the lowest temperature (−25 °C), the presence of C30 clusters shows that HOM monomers start to contribute to the nucleation of positive clusters. These experimental findings are supported by quantum chemical calculations of the binding energies of representative neutral and charged clusters.