智慧农业 (Jul 2019)
Research and prospect of solar insecticidal lamps Internet of Things
Abstract
Along with the increasing awareness of environmental protection and growing demand for green and pollution-free agricultural products, it has a great need to explore new ways to apply greener pest control methods in agricultural production. Researching on Solar Insecticidal Lamps (SILs) has continuously received incremental attentions from both the academia and industry, which brings a new mode for the preventing and controlling of agricultural migratory pests with phototaxis feature, and now is becoming to a hot research topic. Towards the fast development of "precision agriculture" and "smart agriculture" as well as the increasing demands for agricultural informatization, Wireless Sensor Networks (WSNs) have been widely used for agricultural information collection and intelligent control of agricultural equipment. WSNs are suitable for large-scale deployment and regional monitoring, which can be easily combined with SIL nodes. Based on the combination, a new type of agricultural Internet of things - Solar Insecticidal Lamps Internet of Things (SIL-IoTs) was proposed and the technology of WSNs for the prevention and control of phototactic migratory pests in agricultural applications were surveyed. Firstly, the state-of-art insecticidal lamps applications was reviewed and their characteristics deployment manners and working lifetime in the production of crops (e.g., forest, fruits, rice, vegetables) were summarized. Secondly, the characteristics of existing GSM/3G/4G-enabled SIL nodes and their latest research status on SIL-IoTs were summarized. Furthermore, the research status was analyzed concerning the energy harvesting mode and deployment characteristics of SIL, which are solar energy SIL harvesting mode for energy saving and the heuristic mode for node deployment, respectively. Finally, towards the fast-developed vision of smart agriculture, in which various emerging IT and automation technologies are maturely applied, SIL-IoTs can be considered as a new and important component to contribute to the green agricultural pest monitoring and control. To further enhance SIL-IoTs' capability and enrich SIL-IoTs' function, four open research issues on SIL-IoTs were proposed, i.e., 1) optimized deployment scheme of SIL-IoTs with multiple constrains, 2) optimized and adaptive energy management strategy for ensuring normal working hours of SIL node, 3) lack of algorithms for pests outbreak area localization, and 4) interference on data transmission because of dense high voltage discharge during severe pest disaster. To sum up, SIL-IoTs is one of the representative applications of "precision agriculture" and "smart agriculture" based on WSNs, which is a new model on prevention and control of pests. The combination of both optimized deployment algorithms of SIL-IoTs nodes and artificial intelligence techniques will provide a theoretical basis for SIL-based applications in terms of optimized deployment and energy management. Intelligent pest information collection, alarm, and node' senergy management via SIL-IoTs will facilitate decisions-makings for precise agricultural applications in prevention and control of pests.
Keywords