Respiratory Research (Mar 2019)

Role of RASEF hypermethylation in cigarette smoke-induced pulmonary arterial smooth muscle remodeling

  • Qinghai Li,
  • Jixing Wu,
  • Yongjian Xu,
  • Lu Liu,
  • Jungang Xie

DOI
https://doi.org/10.1186/s12931-019-1014-1
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Background Pulmonary hypertension (PH) is a progressive and fatal disease. While cigarette smoke can change DNA methylation status, the role of such molecular alterations in smoke-associated PH is unclear. Methods A PH rat model was developed by exposing animals to cigarette smoke for 3 months. Right ventricular systolic pressure was measured with a right heart catheter. Histological changes (right ventricular hypertrophy index, medial wall thickness in pulmonary arteries (PAs)) and DNMT1 protein levels in rat PAs or primary human PA smooth muscle cells (HPASMCs) exposed to cigarette smoke extract were assessed. Methylation sequencing and MassArray® were used to detect genomic and RASEF promoter methylation status, respectively. After DNMT1 knockdown and cigarette smoke extract exposure, HPASMCs behavior (proliferation, migration) and RASEF methylation status were examined; RASEF mRNA expression was evaluated by real-time-polymerase chain reaction. RASEF overexpression viral vectors were used to assess the impact of RASEF on rat PH and HPASMCs remodeling. Results Higher right ventricular systolic pressure, medial wall thickness, and right ventricular hypertrophy index values were observed in the smoking group rats. Smoke exposure increased DNMT1 expression and RASEF methylation levels in rat PAs and HPASMCs. Cigarette smoke extract induced HPASMCs behavioral changes and RASEF hypermethylation followed by silencing, while DNMT1 knockdown markedly inhibited these changes. RASEF overexpression distinctly inhibited PH and HPASMCs remodeling, possibly through phospho-AKT (Ser473), PCNA, and MMP9 downregulation. Conclusions Cigarette smoke caused PA remodeling in PH rats related to RASEF hypermethylation. These results expand our understanding of key epigenetic mechanisms in cigarette smoke-associated PH and potentially provide a novel therapeutic target for PH.

Keywords